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Simple New Axioms for Quantum Mechanics

N. P. Landsman1
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The space 3 of pure states of any physical system, classical or quantum, is
identified as a Poisson space with a transition probability. These two structures
are connected through unitarity. Classical and quantum mechanics are each
characterized by a simple axiom on the transition probability p. Unitarity then
determines the Poisson bracket of quantum mechanics up to a multiplicative
constant (identified with Planck’ s constant).

1. INTRODUCTION

Axiomatic quantum mechanics [see Beltrametti and Cassinelli (1984)

for a representative overview] is usually inspired by a mixture of two extreme

attitudes. One the one hand, one could try to show that the laws of thought

necessarily imply that nature has to be described by quantum mechanics. On
the other hand, quantum mechanics could be a contingent theory. In this

paper we will show that quantum mechanics can be described by one axiom

that is fairly general, incorporates classical mechanics as well, and may fall

into the first category, and by two further axioms which, in our opinion, are

clearly contingent.

The purpose of our axiomatization is twofold. First, it suggests at what
point quantum mechanics may be modified. Second, it formalizes classical

and quantum mechanics in parallel, so that it becomes crystal clear to what

extent these two theories agree and where they (dramatically) differ. Thus

we expect the structure set out below to be useful in the theory of quantization

as well as of the classical limit of quantum mechanics (Landsman, 1996).
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In order to make this paper readable for nonexperts in quantum logic,

technicalities have been kept to a minimum; a complete treatment of the

present work may be found in Landsman (1997).

2. POISSON BRACKETS

The pure states of a classical mechanical system are the points of its

phase space 3. This space is equipped with a Poisson structure, that is, for

any two (smooth) functions f, g on 3 the Poisson bracket { f,g} is defined.

One calls 3 a Poisson manifold. Thus any (smooth) function h on 3 defines

a Hamiltonian vector field Xh on 3 by Xh ( f ) : 5 {h,f}, and the Hamiltonian
equations of motion satisfied by a curve s (t) in 3 are (Marsden and

Ratiu, 1994)

d s (t)

dt
5 Xh( s (t)) (1)

In the 1960s it was discovered by many people [see Marsden and Ratiu

(1994) for a modern presentation and references] that quantum mechanics
may, to some extent, be brought into the same form. Here one chooses 3 5
P(*), the projective space of *, the Hilbert space of (pure) states of the

system. Every Hermitian linear operator A on * defines a real-valued function

AÃon 3 by AÃ( c ) : 5 ^ c | A | c & / ^ c | c & , where c P P(*) is the image of | c & P *.

The Poisson bracket of such functions is essentially given by the commutator:

{AÃ, BÃ} 5
i

"
[
Ù
A, B] (2)

The SchroÈ dinger equation (projected to 3) is then precisely (1), with h 5 HÃ.

Hence quantum mechanics may be described in the language of classical

mechanics, with some curious extra rules: the phase space is 3 5 P(*), the

Poisson bracket is defined by (2), and only functions of the form AÃ(rather

than all smooth functions on 3, as in classical mechanics) correspond to
observables [but note that the Poisson bracket of any two functions on 3 is

determined by the special case (2)].

In order to formulate the axioms below, we need to briefly recall a basic

theorem on Poisson structures; a full account is in Marsden and Ratiu (1994).

Namely, every Poisson manifold 3 can be decomposed as the union of its

symplectic leaves: these are maximal subspaces on which the Poisson structure
is nondegenerate. This means that at each point r the Hamiltonian vector fields

Xf span the tangent space of the leaf through r . An important consequence of

this definition is that the Hamiltonian flow through a given point must stay

in the symplectic leaf containing the point.
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3. TRANSITION PROBABILITIES

It was known from the earliest days of quantum mechanics that the

notion of a transition probability is of central importance to this theory.

Abstractly, a transition probability p on a set 3 is a function on 3 3 3,

taking values in the interval [0,1], with the special property that p ( r , s ) 5
1 is equivalent to r 5 s ; see von Neumann (1981), Mielnik (1968), and

Beltrametti and Cassinelli (1984). Moreover, in general one assumes the
symmetry property p ( r , s ) 5 p ( s , r ). In standard quantum mechanics one

puts 3 5 P(*), as above, and

p ( r , s ) 5 | ^ V r | V s & | 2 (3)

where | V r & and | V s are unit vectors in * which project to r and s in

P(*), respectively.

The physical meaning of transition probabilities implies that in the case

of classical mechanics, where 3 is an arbitrary manifold, one has to put

p ( r , s ) 5 d r s " r , s (4)

In what follows we need the (obvious) result that any space with a

transition probability decomposes as the union of its irreducible components,

called sectors (a subspace is irreducible if it is not the union of two mutually
orthogonal spaces). For any subset Q of 3 one defines the orthoplement

Q ’ : 5 { s P 3 | p ( r , s ) 5 0 " r P Q}. The possible superpositions of the

pure states r , s are then the elements of { r , s } ’ ’ . If r and s lie in different

sectors, then clearly { r , s } ’ ’ 5 { r , s }. A subset Q of 3 which satisfies

Q ’ ’ 5 Q is called orthoclosed. In what follows we assume that a standard

technical requirement on the transition probabilities is satisfied: each maximal
orthogonal subset {ei} of an orthoclosed subset Q is a basis, in that ( i p(ei,

r ) 5 1 for all r P Q. Cf. Mielnik (1968) and Beltrametti and Cassinelli (1984).

It is possible to canonically associate a certain function space A(3)

with any transition probability space 3. For each r P 3, define a function

p r on 3 by p r ( s ) : 5 p ( r , s ). Define the real Banach space A0(3) as the
completion (in the supremum norm) of the set of all real finite linear

combinations f 5 ( k l k p r k, r k P 3. Then A(3) : 5 A0(3)**. It is easily

inferred that A(3) # ,` (3). Since the transition probabilities in classical

mechanics are given by (4), one has p r ( s ) 5 d r s , and hence A(3) 5 , ` (3).

For 3 5 P(*) with (3), on the other hand, one finds A0(3) 5 K(*)sa, hence

A(3) 5 B(*)sa (the space of all bounded self-adjoint operators on *).

4. THE AXIOMS

The mathematical structure characterizing pure state spaces in classical

and quantum mechanics can now be identified. Until the last paragraph of
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this section we exclude the case in which 3 is infinite-dimensional (as a

transition probability space) and contains a continuous family of (superselec-

tion) sectors. Lifting this restriction is possible, and quite important for pure
state spaces of C*-algebras, but this leads to certain technical complications

that distract from the main argument (see Landsman, 1997).

A Poisson space with a transition probability is at the same time a

transition probability space (3, p) and a Poisson manifold (3, { , }), such

that the Poisson structure is unitary in the following sense. Regard h P A(3)

ù C ` (3) as a Hamiltonian on 3, with Hamiltonian flow s (t) given by the
solution of (1). Unitarity now means that for each such h this flow leaves

the transition probabilities invariant, in that p ( s 1(t), s 2(t)) 5 p ( s 1, s 2) for

all s 1, s 2 e 3 and all t.
Our axioms on the pure state space 3 of quantum mechanics with

discrete superselection rules are:

x QM1: The pure state space 3 is a Poisson space with a transition

probability.

x QM2: For each pair ( r , s ) of points which lie in the same sector of

3, { r , s } ’ ’ is isomorphic to P(C2) as a transition probability space;

x QM3; The sectors of (3, p) coincide with the symplectic leaves of

(3, { , }).

Here P(C2) is understood to be equipped with the usual Hilbert space transition

probabilities. Axiom QM2 is essentially due to Shultz (1982); QM1 and QM3

appear to have no analogue in the literature.

To axiomatize classical mechanics one simply postulates CM1 5 QM1,

and CM2 5 equation (4). Then A(3) ù C ` (3) 5 C `
b (3). Each point is a

sector, and there is no restriction on the Poisson structure. In particular, 3 may

be symplectic, so that axiom QM3 is blatantly violated by classical mechanics.

5. CONSEQUENCES OF THE AXIOMS

It can be shown (Landsman, 1997) that the axioms QM1±QM3 imply
that 3 5 ø i P(*)i (which is meant as a union over sectors). Here each *i

is a Hilbert space, and the transition probabilities in each sector P(*)i are

given by (3). Moreover, the Poisson bracket on 3 is determined up to a

collection of multiplicative constant " i; in each sector (or, equivalently, sym-

plectic leaf) P(*)i it is given by (2), with " ® " i.

In the irreducible case of one sector, an outline of the proof is as
follows. First, on the basis of Axiom QM1 one constructs a complete atomic

orthomodular lattice +(3), whose members are the orthoclosed subspaces

of 3. A lengthy argument using Axiom QM2 and the (von Neumann) coordi-

natization procedure for projective lattices eventually leads to +(3) 5 +(*)
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(the projection lattice of *). Wigner’ s theorem implies that the transition

probabilities must be given by (3). Second, the identification of the Poisson

structure on 3 follows from Axiom QM3 and Wigner ’ s theorem. The latter,
combined with unitarity (in our sense), implies that each AÃgenerates a flow

on P(*) which is the projection of a unitary flow on *. Therefore,

{AÃ, BÃ}( s ) 5
d

dt
BÃ(exp(itC ) s )t 5 0

for some Hermitian operator C on *, depending on A. The right-hand side
equals i[

Ù
C, B] ( s ). Antisymmetry of the left-hand side implies that C 5 " A

for some " P R, where " 2 1 Þ 0 in order to satisfy Axiom QM3.

In the irreducible case the only free parameters are dim (*) and É; we

find it gratifying to see Planck’ s constant enter as a free parameter allowed

by the axioms. We see very clearly that the entire purpose of " is to set the

scale of the Poisson bracket; the transition probabilities are independent of
it. In classical mechanics the pure state space and the Poisson structure can

be freely specified.

We now show how the usual observables of quantum mechanics can

be reconstructed, restricting ourselves to the finite-dimensional case [see

Landsman (1997) for the general construction]. First, the space of observables
is simply A(3). In other words, the observables of quantum mechanics are

in essence the transition probabilities. Second, one has a spectral theorem in

A(3): every function f 5 ( m ip r i can be rewritten as f 5 ( j l jpej
, where

p (ej, ek) 5 d jk. This gives us a squaring map f 2 : 5 ( j l 2
j pej, and subsequently

a commutative Jordan product by f + g 5 1±4 (( f 1 g)2 2 ( f 2 g)2), which

happens to be bilinear because of the special form (3) of p. One can rescale
the Poisson bracket in each sector, so that it is given by (2), with a single

overall constant " . We now complexify A(3), and define a product ? on

A(3)C by f ? g 5 f + g 2 1±2 i " { f, g}. This product turns out to be associative

as a consequence of the unitarity relating the transition probability (which

is ultimately responsible for the product + ) and the Poisson bracket. Finally,

one (easily) shows that the algebra (A(3)C, ? ) thus constructed is a direct
sum of matrix algebras. Indeed, in case of a single sector the usual spectral

theorem already says that any function AÃlies in A(3) (for Hermitian A ). In

any case, it is pleasant to represent observables as real-valued functions on

the space of pure states, just like in classical mechanics.

6. BEYOND QUANTUM MECHANICS

In our opinion, the most remarkable aspect of these axioms lies in the

universality of the transition probabilities in quantum mechanics. Take any

quantum system, and any two of its pure states: Axiom QM2 describes their
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superpositions and transition probabilities. This strongly suggests that there

should be some underlying explanation for these transition probabilities. The

central limit theorem of probability theory comes to mind: whatever the
individual probability distribution (as long as the mean and the standard

deviation are finite), if one has a large number of replicas, one will find that

fluctuations are described by the Gaussian (normal) distribution. One would

hope that the `distribution’ (3) emerges in a similar way as some universal

limit.
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